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Quantitative Development of BCS Theory
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Recap: “fully condensed” BCS state described by N-nonconserving w.f.

Ψ =
∏
k

Φk, Φk ≡ uk|00 >k +υk|11 >k (1)

|uk|2 + |υk|2 = 1.

We need to determine the values of uk in the GS, i.e. the state which minimizes the total

energy with the −µN̂ subtraction, i.e.

Ĥ = T̂ − µN̂ + V̂ (2)

In the following, we ignore the Fock term in < V > until further notice (we already saw

the Hartree term just contributes a constant, 1
2
V0 < N >2 .) Then < V > is just the pairing

terms, see Lecture 5:

< V >=
∑
kk′

Vkk′FkF
∗
k′ , Fk ≡ ukυk. (3)

Vkk′ ≡ matrix element for (k ↓,−k ↑)→ (k′ ↑,−k′ ↓)
Now consider the term

T̂ − µN̂ =
∑
kσ

nkσ(ξk − µ) ≡
∑
kσ

nkσεk (4)

It is clear that |00 >k is an eigenstate of nkσ with eigenvalue 0, and |11 >k with eigenvalue

1. Hence, taking into account the
∑
σ,

< T̂ − µN̂ >= 2
∑

k εk|υk|2 (note: has finite negative energy in normal gas!)

and so:

< H >= 2
∑
k

εk|υk|2 +
∑
kk′

Vkk′(ukυk)(uk′υ∗k′) (5)

and this must be minimized subject to constraint |uk|2 + |υk|2 = 1

One pretty way of visualizing problem: Anderson pseudospin representation: Put

uk(= real) = cos θk/2, υk = sin(θk/2) · exp iφk (6)
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Then, apart from a constant (
∑

k εk),

< H >=
∑
k

(−εk cos θk) +
1

4

∑
kk′

Vkk′ sin θk sin θk′ · cos(φk − φk′) (7)

Anderson pseudospin representation of BCS Hamiltonian: use Pauli vectors σk such that

(“classically”) |σk| = 1 and take θk, φk to be polar angles, then (up to a constant)

< H >= −
∑
k

εkσzk +
1

4

∑
kk′

Vkk′σk⊥ · σk′⊥ = −
∑
k

σk · Hk (8)

(σk⊥ ≡ component of σk in xy= plane)

where pseudo-magnetic field Hk given by

Hk ≡ −εkẑ −∆k (9)

∆k ≡ −
1

2

∑
k′
Vkk′σk′⊥ (∗) (-sign introduced for convenience)

Rather than representing ∆k and σk⊥ as vectors, it is actually very convenient to represent

them as complex numbers ∆k ≡ ∆kx + i∆ky, σk⊥ ≡ σkz + iσky.

Evidently the magnitude of the field Hk is

|Hk| ≡ (ε2k + |∆k|2)1/2 ≡ Ek (10)

and in the ground state the spin k lies along the field Hk, giving an energy −Ek. If spin is

reversed, this costs 2Ek (not Ek!). This reversal corresponds to

θk → π − θk, φk → φk + π (11)

and up to an irrelevant overall phase factor this corresponds to

u′k = sin
θk
2

exp−iφk ≡ υ∗k (12)

υ′k = − cos
θk
2
≡ −uk

i.e., the excited state so generated is

Φexc
k = υ∗k|00 > −uk|11 > (13)

which may be verified to be orthogonal to the GS Φk = uk|00 > +υk|11 >. (remember, we

take uk real)
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Since in the GS each spin k must point along the corresponding field, this gives a set of

self-consistent conditions for the ∆k: since σk⊥ = −∆k′/Ek′ , we have from (*)

∆k = −
∑
k′
Vkk′∆k′/2Ek′ (14)

or in terms of the complex quantity ∆k ≡ ∆kx + i∆ky,

∆k = −
∑
k′
Vkk′∆k′/2Ek′ ← BCS gap equation. (15)

Note derivation is quite general, in particular never assumes s-state (though does assume

spin singlet pairing)

Alternative derivation of BCS gap equation: Simply parametrize uk and υk by ∆k and

Ek ≡ (ε2k + |∆k|2)1/2, as follows:

υk ≡
∆k

(|∆k|2 + (Ek + εk)2)1/2
uk ≡

Ek + εk
(|∆k|2 + (Ek + εk)2)1/2

(16)

This clearly satisfies the normalization condition: |uk|2 + |υk|2 = 1, and gives

|uk|2 =
1

2
(1 +

εk
Ek

), |υk|2 =
1

2
(1− υk

Ek

), ukυk =
∆k

2Ek

(17)

The BCS energy (5) can therefore be written in the form

< H >=
∑
k

εk(1− εk/Ek) +
∑
kk′

∆k

2Ek

∆∗k′

2E ′k
(18)

The various ∆k are independent variational parameters: varying them to minimize 〈H〉 and

using ∂Ek/∂∆k = ∆∗k/Ek, we find an equation which can be written

ε2k
E2

k

(∆∗k −
∑
k′
Vkk′

∆∗k′

2Ek′
) = 0 (19)

Cancelling the prefactor and taking the complex conjugate gives back the standard gap

equation.

[Assume s-state until further notice, i.e., ∆k = function of only |k|.]

Behavior of < nk > and Fk in groundstate

Let’s anticipate the result that in most cases of interest, ∆k will turn out to be ∼ const

≡ ∆ over a range � ∆ itself near the F.S. Then we have < nk >= |υk|2 = 1
2
(1− εk√

ε2
k

+|∆|2
)

and Fk = ukυk = ∆
2Ek
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Thus, behavior of < nk > qualitatively similar to normal-state behavior at finite T (but

falls off very slowly, ∼ ε−2 rather than exponentially). Fk falls off as |ε|−1 for large ε. [F (r)

in coordinate space: see below, lecture 7.]

BCS theory at finite T

Obvious generalization of N -conserving GSWF: many body density matrix ρ̂ is product

of density matrices referring to occupation space of states k ↑, −k ↓.

ρ̂ =
∏
k

ρ̂k (20)

The space k is 4-dimensional, and can be spanned by states of the forms

ΦGP ≡ uk|00 > +υk|11 >, “ground pair” (21)

ΦEP ≡ υ∗k|00 > −uk|11 >, “excited pair”

Φ
(1)
BP ≡ |10 >, Φ

(2)
BP ≡ |01 >, “broken pair”

As regards the first two, they can again be parametrized by the Anderson variables θk, φk:

the difference, now, is that there is a finite probability that a given “spin” k will be reversed,

i.e., the pair is in state ΦEP rather than ΦGP . There is also finite probability that the pair

in question will be a broken-pair state, in which case it clearly will not contribute to < V >

and thus not to the effective field. Thus, we can go through the argument as above and

derive the result.

∆k = −1

2

∑
k′
Vkk′ < σ⊥k′ > (22)

but the < σ⊥k′ > is now given by the expression

< σ⊥k′ >= −(P
(k′)
GP − P

(k′)
EP )∆k′/Ek′ (23)
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and thus the gap equation becomes

∆k = −
∑
k′
Vkk′(P

(k′)
GP )− P (k′)

EP )∆k′/2Ek′ (24)

We therefore need to calculate the quantities P
(k)
GP , P

(k)
EP . (Since the states |10 > and

|01 > are fairly obviously degenerate, we clearly must have P
(k)
GP + P

(k)
EP + 2P

(k)
BP = 1).

Since we are talking about different occupation states, there is no question of Fermi or

Bose statistics, and the probability of occupation of a given state is simply proportional to

exp−βEn(β ≡ 1/kBT ) where En is the energy of the state.

Thus,

P
(k)
GP : P

(k)
BP : P

(k)
EP = exp−βEGP : exp−βEBP : exp−βEEP (25)

we already know that EEP − EGP = 2Ek, (but Ek = Ek(T )!). What is EBP − EGP ? Here

care is needed in accounting. If all (MB) energies are taken relative to the normal-state F .

sea, then evidently the energy of the “broken pair” states |01 > or |10 > is εk (which can

be negative!). In writing down the Anderson pseudospin Hamiltonian, however, we omitted

the constant term
∑

k εk. Hence the energy of the GP state relative to the normal F . sea is

not −Ek but εk − Ek. Hence, we have

EBP − EGP = Ek (26)

EEP − EGP = 2Ek

Hence tempting to think of BP states |10 > and |01 > as excitations of a “quasi-particle”

and the EP state as involving excitations of 2 “quasiparticles.” (Formalized in Bogoliubov

transformation:

α+
k↑ = uka

+
k↑ − υkak↓ (27)

etc. Return to this below)

Anyway, this gives1

P
(k)
GP : P

(k)
BP : P

(k)
EP = 1 : exp−βEk : exp−2βEk (28)

and

P
(k)
GP − P

(k)
EP =

1− e−2βEk

1 + 2e−βEk + e−2βEk
= tanh(βEk/2) (29)

1Note that in the normal state, where “GP” is simply |11 > for εk < 0 and |00 > for εk > 0, this gives
for εk > 0 < nk >= 2(PEP + PBP ) = 2/(eβεk + 1), and similarly for εk < 0, i.e. the correct single-particle
Fermi statistics.
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Therefore, the finite-T BCS gap equation is:

∆k = −∑
k′ Vkk′

∆k′
2Ek′

tanh βEk′/2 (30)

[Note: Also possible to derive by brute-force minimization of free energy as F (∆k), see e.g.

AJL app. 5D] This may or may not have (one or more) nontrivial solutions, depending on

form of Vkk′ and value of T , see below.

Finite-T values of < nk > and Fk : Fk is simply reduced by factor tanh βEk/2. < nk >

is given by a more complicated expression which correctly reduces to the Fermi distribution

for ∆→ 0, T finite.

Alternative approach in terms of Bogoliubov quasiparticle operators:

Consider the operators α+
kσ defined by (*)

α+
kσ ≡ uka

+
kσ − συ∗ka−k,−σ, and H.C. (31)

so that inverse transformation is:

a+
kσ ≡ ukα

+
kσ + συkα−k,−σ (32)

It may be easily verified that the operators αkσ satisfy the same fermion A.C. relations as

the akσ, namely,

[αkσ, α
+
k′σ′ ] = δkk′δσσ′ (33)

It is also straightforward to verify that2

αkσ|GP >≡ 0, α+
k↑|GP >= |10 >, α+

k↓|GP >= |01 > (34)

α+
k↑α

+
−k↓|GP >= |EP >

Hence the α+
k ’s effectively create independent quasiparticles—EP states can be regarded

as two independent excited quasiparticles corresponding to k ↑ and −k ↓.
Since EBP − EGP = Ek and EEP − EGP = 2Ek, we can write the Hamiltonian in the

form

Ĥ = const +
∑
kσ

Ekα
+
kσαkσ (35)

At finite T the QP’s will satisfy the standard Fermi distribution (but with µ = 0, since

they can be created and destroyed):

nQP (k) = (exp βEk + 1)−1 (36)

2Here it is essential to remember that |11 > is defined as a+k↑a
+
−k↓|00 >, not a+−k↓a

+
k↑|00 > [sign change].
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We see that the quantity 〈a+
k↑a

+
−k↓〉 ≡ 〈a−k↓ak↑〉∗ ≡ F ∗k is given by

〈a+
k↑a

+
−k↓〉 = ukυ

∗
k〈α+

k↑αk↑ − αk↓α
+
−k↓〉+ terms with no e.v. (37)

= ukυ
∗
k(nk↑ − (1− n−k↓)) = ukυ

∗
k(1− 2nk)

= ukυ
∗
k tanh βEk/2, as previously.

[cf. p. 5.6, foot, for sign +c.c.!]

Note: a Bogoliubov quasiparticle doesn’t carry unit particle number, since [N̂ , α+
kσ] 6=

const. α+
kσ, but does carry unit spin ([Ŝ, α+

kσ] = σα+
,σ).

Properties of BCS gap equation (eqn. (30))

(1) Independently of form of Vkk′ , equation always has trivial solution ∆k = 0 (N state)

(2) If Vkk′ = Vo > 0, no (nontrivial) solution (cf. below).

(3) for T →∞, no nontrivial solution.

[reduces to −∑
k′ Vkk′∆′k = kBT∆k, and −Vkk′ must have maximum eigenvalue.]

Hence, if ∃ nontrivial solution at T = 0, must ∃ critical temperature Tc at which this solution

vanishes.

(4)Reduction to BCS form3 (Vkk′ ∼= −V0 = const with cutoff).

Possible if and only if typical energy range over which Vkk′ changes appreciably is� ∆(0),

which as we can verify, is ≥ T for T ≤ Tc [self-consistent solution using BCS form]. If so,

define εc � ∆, T so that for εk within εc Vkk′ ∼= independent of εk, and write BCS equation

in symbolic matrix form

∆ = −V̂ Q̂∆ ≡ −V̂ (P̂1 + P̂2)Q̂∆ (+) (38)

where

Q̂ ≡ δkk′ · (tanh βEk′/2)/2Ek′ (39)

P1 projects out states |εk| > εc, and P2 states < εc, (so P̂1 + P̂2 = 1̂). (+) can be rearranged

to give

∆ = − V̂ P̂2Q̂∆

(1 + P̂1Q̂V̂ )
≡ −t̂P̂2Q̂∆, t̂ =

V̂

1 + P̂1Q̂V̂
(40)

i.e. t̂ sums over multiple scatterings outside “shell”. Crucial point: since all states outside

shell by hypothesis have |εk| � ∆, T the factor Q occurring in t̂ is essentially δkk′/2|εk′ | and

3The ensuing argument implicitly assumes that Vkk′ is not a strong function of the directions of kk′. If
it is, non-s-wave solutions may be possible (cf. part 2 of course).
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hence t̂ depends neither on ∆ nor on T , but is just some fixed operator which is a sort of

“effective potential within shell.” Moreover, by hypothesis, tkk′ is practically constant, ∼ t0,

within shell. Hence gap equation becomes (putting t0 ≡ −V0)

∆k = −V0

∑
k′,|Ek′ |<εc

∆k′
tanh βEk′/2

2Ek′
(41)

This is exactly the equation originally obtained by BCS, who assumed Vkk′ = const = V0

within shell |εk|, |εk′| < εc, otherwise zero. Note one can show that solution of equation

doesn’t depend on arbitrary cutoff energy εc (V0 scales so as to cancel this).

(5)Solution of BCS model: (eqn. (41))

Rewrite using
∑

k → N(0)
∫
dε N(0) ≡ 1

2
(dn
dε

) and put ∆k = const. ≡ ∆

λ−1 =
∫ εc

0

(tanh βE/2

E
dε, λ ≡= −N(0)V0(≡ −1/2(

dn

dε
V (0)), E ≡ (ε2 + |∆|2)1/2

(42)

[Factor of 2 cancelled by
∫
−εεcc dε→ 2

∫ εc
0 dε]

Obvious that no solution exists for V0 > 0. For V0 < 0:

Critical temperature: put β = βc, ∆→ 0, hence E → |ε|:

λ−1 =
∫ εc

0

tanh(βcε/2)

ε
dε = ln(1.14βcεc) (43)

⇒ kBTc = 1.14εc exp−λ−1 ≡ 1.14εc exp−1/N(0)|V0|

This expression is insensitive to arbitrary cutoff energy εc since |V0| ∼ const + lnεc, i.e.

cancels dependence. So, plausible to take value εc ∼ ωD, (as in original BCS paper): since

ωD ∼ M−1/2, predicts Tc ∼ M−1/2 and helps to explain isotope effect. Also, assures self-

consistency since experimentally, Tc � εc.

Zero-T solution:

λ−1 =
∫ εc

0

dε√
ε2 + |∆(0)|2

= sinh−1(εc/∆(0)) ∼= ln(2εc/∆(0)) (44)

⇒ ∆(0) = 2εc exp−1/λ = 1.75Tc (1.75 = 2/1.14)

Since ∆(0) measured in tunneling experiments (Lecture 7), can compare with experiment.

Usually works quite well, but for “strong-coupling” superconductors where Tc/εc not very

small, ∆(0)/kBTc usually somewhat > 1.75.

At finite temperature, T < Tc, gap equation can be written∫ εc

0
{tanh βE(T )/E(T )− tanh βcε/ε} dε = 0 (45)

8



and
∫

extended to ∞ (since it converges)

⇒ ∆(T ) is of form (46)

∆(T )/∆(0) = f(T/Tc)

(Or equivalently ∆(T ) = kTcf̃(T/Tc)). Roughly,

∆(T )/∆(0) = (1− (T/Tc)
4)1/2, (47)

Near Tc exact results obtainable, cf. below:
∆(T )
∆(0)
∼ 1.74(1− T/Tc)1/2 or ∆(T )/kεTc ∼ 3 · 06(1− T/Tc)1/2

(6)Back to the question of the Fock term

We earlier neglected the Fock term in the energy, namely,

H − µN >Fock= −
1

2

∑
kk′σ

Vkk′〈nkσ〉〈nk′σ〉 (48)

This is equivalent to a shift in the single particle energy:

εk → εk −
∑
k′
Vkk′〈nk′〉 (assuming 〈nkσ〉 independent of σ) (49)

and in general this depends on ∆. We have seen that crudely speaking, 〈nk〉 is smeared out

away from its N-state value in the S state over an order ∼ ∆, and moreover the smearing is

symmetric around the Fermi surface4. Thus, if Vkk′ is approximately constant over εk � ∆,

the renormalization of εk is the same in the N and S states and has no effect on the energetics

of the transition.

(7) Generalizations of BCS

(a) Sommerfeld → Bloch: ⇒ ∆ may be f(n̂), but qualitatively unchanged.

(b) Landau Fermi-liquid: to the extent,
∑
|k| < nk > unchanged on going from N to S,

the “polarizations” which bring the molecular field terms into play do not occur ⇒ only

effect is m → m∗: molecular-field terms do not affect the gap equation. But they do affect

the responses, just as in the normal state. (cf. Lecture 8.)

(c) Coulomb long-range terms: have no effect on gap equation, do affect the responses.

(d) Strong coupling: crudely speaking, effects which vanish for ∆/ωD → 0. (e.g. ap-

proximation of constant renormalized V not exact). Need much more complicated treat-

ment(Eliashberg). Generally speaking, this treatment provides only fairly small corrections

4Argument may fail in presence of severe particle-hole asymmetry: even if ∆ itself is constant, may lead
to

∑
|k| < nk >= f(n̂)
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to “naive” BCS. (e.g. ratio (∆(0)/kBTc), 1.75 in naive BCS, can be as large as 2.4 (Hg,

Pb)).
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