Physics 598SC
Superconductivity, Ancient and Modern -
Phys598 - Fall 2015

Lecture \#6

Quantitative Development of BCS Theory

Ref: AJL, Quantum Liquids, ch. 5, sections 4 and 5.
Recap: "fully condensed" BCS state described by N-nonconserving w.f.

$$
\begin{equation*}
\Psi=\prod_{\mathbf{k}} \Phi_{\mathbf{k}}, \quad \Phi_{\mathbf{k}} \equiv u_{\mathbf{k}}\left|00>_{\mathbf{k}}+v_{\mathbf{k}}\right| 11>_{\mathbf{k}} . \tag{1}
\end{equation*}
$$

We need to determine the values of $u_{\mathbf{k}}$ in the GS, i.e. the state which minimizes the total energy with the $-\mu \hat{N}$ subtraction, i.e.

$$
\begin{equation*}
\hat{H}=\hat{T}-\mu \hat{N}+\hat{V} \tag{2}
\end{equation*}
$$

In the following, we ignore the Fock term in $\langle V\rangle$ until further notice (we already saw the Hartree term just contributes a constant, $\frac{1}{2} V_{0}<N>^{2}$.) Then $<V>$ is just the pairing terms, see Lecture 5:

$$
\begin{equation*}
<V>=\sum_{\mathbf{k k}^{\prime}} V_{\mathbf{k k}^{\prime}} F_{\mathbf{k}} F_{\mathbf{k}^{\prime}}^{*}, \quad F_{\mathbf{k}} \equiv u_{\mathbf{k}} v_{\mathbf{k}} \tag{3}
\end{equation*}
$$

$V_{\mathbf{k k}^{\prime}} \equiv$ matrix element for $(\mathbf{k} \downarrow,-\mathbf{k} \uparrow) \rightarrow\left(\mathbf{k}^{\prime} \uparrow,-\mathbf{k}^{\prime} \downarrow\right)$
Now consider the term

$$
\begin{equation*}
\hat{T}-\mu \hat{N}=\sum_{\mathbf{k} \sigma} n_{\mathbf{k} \sigma}\left(\xi_{\mathbf{k}}-\mu\right) \equiv \sum_{\mathbf{k} \sigma} n_{\mathbf{k} \sigma} \epsilon_{\mathbf{k}} \tag{4}
\end{equation*}
$$

It is clear that $\mid 00>_{\mathbf{k}}$ is an eigenstate of $n_{\mathbf{k} \sigma}$ with eigenvalue 0 , and $\mid 11>_{\mathbf{k}}$ with eigenvalue 1. Hence, taking into account the \sum_{σ},
$<\hat{T}-\mu \hat{N}>=2 \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\left|v_{\mathbf{k}}\right|^{2}$ (note: has finite negative energy in normal gas!)
and so:

$$
\begin{equation*}
<H>=2 \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\left|v_{\mathbf{k}}\right|^{2}+\sum_{\mathbf{k k}^{\prime}} V_{\mathbf{k k}^{\prime}}\left(u_{\mathbf{k}} v_{\mathbf{k}}\right)\left(u_{\mathbf{k}^{\prime}} v_{\mathbf{k}^{\prime}}^{*}\right) \tag{5}
\end{equation*}
$$

and this must be minimized subject to constraint $\left|u_{\mathbf{k}}\right|^{2}+\left|v_{\mathbf{k}}\right|^{2}=1$
One pretty way of visualizing problem: Anderson pseudospin representation: Put

$$
\begin{equation*}
u_{\mathbf{k}}(=\text { real })=\cos \theta_{\mathbf{k}} / 2, \quad v_{\mathbf{k}}=\sin \left(\theta_{\mathbf{k}} / 2\right) \cdot \exp i \phi_{\mathbf{k}} \tag{6}
\end{equation*}
$$

Then, apart from a constant $\left(\sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\right)$,

$$
\begin{equation*}
<H>=\sum_{\mathbf{k}}\left(-\epsilon_{\mathbf{k}} \cos \theta_{\mathbf{k}}\right)+\frac{1}{4} \sum_{\mathbf{k k}^{\prime}} V_{\mathbf{k k}^{\prime}} \sin \theta_{\mathbf{k}} \sin \theta_{\mathbf{k}^{\prime}} \cdot \cos \left(\phi_{\mathbf{k}}-\phi_{\mathbf{k}^{\prime}}\right) \tag{7}
\end{equation*}
$$

Anderson pseudospin representation of BCS Hamiltonian: use Pauli vectors $\sigma_{\mathbf{k}}$ such that ("classically") $\left|\sigma_{\mathbf{k}}\right|=1$ and take $\theta_{\mathbf{k}}, \phi_{\mathbf{k}}$ to be polar angles, then (up to a constant)

$$
\begin{equation*}
<H>=-\sum_{\mathbf{k}} \epsilon_{\mathbf{k}} \sigma_{z \mathbf{k}}+\frac{1}{4} \sum_{\mathbf{k k}^{\prime}} V_{\mathbf{k k ^ { \prime }}} \sigma_{\mathbf{k} \perp} \cdot \sigma_{\mathbf{k}^{\prime} \perp}=-\sum_{\mathbf{k}} \sigma_{\mathbf{k}} \cdot \mathcal{H}_{\mathbf{k}} \tag{8}
\end{equation*}
$$

$\left(\sigma_{\mathbf{k} \perp} \equiv\right.$ component of $\sigma_{\mathbf{k}}$ in $\mathrm{xy}=$ plane $)$
where pseudo-magnetic field $\mathcal{H}_{\mathbf{k}}$ given by

$$
\begin{align*}
\mathcal{H}_{\mathbf{k}} & \equiv-\epsilon_{\mathbf{k}} \hat{z}-\Delta_{\mathbf{k}} \tag{9}\\
\Delta_{\mathbf{k}} & \equiv-\frac{1}{2} \sum_{\mathbf{k}^{\prime}} V_{\mathbf{k k}^{\prime}} \sigma_{\mathbf{k}^{\prime} \perp} \quad(*) \quad \text { (-sign introduced for convenience) }
\end{align*}
$$

Rather than representing $\Delta_{\mathbf{k}}$ and $\sigma_{\mathbf{k} \perp}$ as vectors, it is actually very convenient to represent them as complex numbers $\Delta_{\mathbf{k}} \equiv \Delta_{\mathbf{k} x}+i \Delta_{k y}, \sigma_{k \perp} \equiv \sigma_{k z}+i \sigma_{k y}$.
Evidently the magnitude of the field \mathcal{H}_{k} is

$$
\begin{equation*}
\left|\mathcal{H}_{\mathbf{k}}\right| \equiv\left(\epsilon_{\mathbf{k}}^{2}+\left|\Delta_{\mathbf{k}}\right|^{2}\right)^{1 / 2} \equiv E_{\mathbf{k}} \tag{10}
\end{equation*}
$$

and in the ground state the spin \mathbf{k} lies along the field $\mathcal{H}_{\mathbf{k}}$, giving an energy $-E_{\mathbf{k}}$. If spin is reversed, this costs $2 E_{\mathbf{k}}$ (not $E_{\mathbf{k}}!$). This reversal corresponds to

$$
\begin{equation*}
\theta_{\mathbf{k}} \rightarrow \pi-\theta_{\mathbf{k}}, \quad \phi_{\mathbf{k}} \rightarrow \phi_{\mathbf{k}}+\pi \tag{11}
\end{equation*}
$$

and up to an irrelevant overall phase factor this corresponds to

$$
\begin{array}{r}
u_{\mathbf{k}}^{\prime}=\sin \frac{\theta_{\mathbf{k}}}{2} \exp -i \phi_{\mathbf{k}} \equiv v_{\mathbf{k}}^{*} \tag{12}\\
v_{\mathbf{k}}^{\prime}=-\cos \frac{\theta_{\mathbf{k}}}{2} \equiv-u_{\mathbf{k}}
\end{array}
$$

i.e., the excited state so generated is

$$
\begin{equation*}
\Phi_{\mathbf{k}}^{e x c}=v_{\mathbf{k}}^{*}\left|00>-u_{\mathbf{k}}\right| 11> \tag{13}
\end{equation*}
$$

which may be verified to be orthogonal to the GS $\Phi_{\mathbf{k}}=u_{\mathbf{k}}\left|00>+v_{\mathbf{k}}\right| 11>$. (remember, we take $u_{\mathbf{k}}$ real)

Since in the GS each spin \mathbf{k} must point along the corresponding field, this gives a set of self-consistent conditions for the $\Delta_{\mathbf{k}}$: since $\sigma_{\mathbf{k} \perp}=-\Delta_{\mathbf{k}^{\prime}} / E_{\mathbf{k}^{\prime}}$, we have from (*)

$$
\begin{equation*}
\Delta_{\mathbf{k}}=-\sum_{\mathbf{k}^{\prime}} V_{\mathbf{k k}^{\prime}} \Delta_{\mathbf{k}^{\prime}} / 2 E_{\mathbf{k}^{\prime}} \tag{14}
\end{equation*}
$$

or in terms of the complex quantity $\Delta_{k} \equiv \Delta_{k x}+i \Delta_{k y}$,

$$
\begin{equation*}
\Delta_{\mathbf{k}}=-\sum_{\mathbf{k}^{\prime}} V_{\mathbf{k k}^{\prime}} \Delta_{\mathbf{k}^{\prime}} / 2 E_{\mathbf{k}^{\prime}} \leftarrow \text { BCS gap equation. } \tag{15}
\end{equation*}
$$

Note derivation is quite general, in particular never assumes s-state (though does assume spin singlet pairing)

Alternative derivation of BCS gap equation: Simply parametrize $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ by $\Delta_{\mathbf{k}}$ and $E_{\mathbf{k}} \equiv\left(\epsilon_{\mathbf{k}}^{2}+\left|\Delta_{\mathbf{k}}\right|^{2}\right)^{1 / 2}$, as follows:

$$
\begin{equation*}
v_{\mathbf{k}} \equiv \frac{\Delta_{\mathbf{k}}}{\left(\left|\Delta_{\mathbf{k}}\right|^{2}+\left(E_{\mathbf{k}}+\epsilon_{\mathbf{k}}\right)^{2}\right)^{1 / 2}} \quad u_{\mathbf{k}} \equiv \frac{E_{\mathbf{k}}+\epsilon_{\mathbf{k}}}{\left(\left|\Delta_{\mathbf{k}}\right|^{2}+\left(E_{\mathbf{k}}+\epsilon_{\mathbf{k}}\right)^{2}\right)^{1 / 2}} \tag{16}
\end{equation*}
$$

This clearly satisfies the normalization condition: $\left|u_{\mathbf{k}}\right|^{2}+\left|v_{\mathbf{k}}\right|^{2}=1$, and gives

$$
\begin{equation*}
\left|u_{\mathbf{k}}\right|^{2}=\frac{1}{2}\left(1+\frac{\epsilon_{\mathbf{k}}}{E_{\mathbf{k}}}\right),\left|v_{\mathbf{k}}\right|^{2}=\frac{1}{2}\left(1-\frac{v_{\mathbf{k}}}{E_{\mathbf{k}}}\right), u_{\mathbf{k}} v_{\mathbf{k}}=\frac{\Delta_{\mathbf{k}}}{2 E_{\mathbf{k}}} \tag{17}
\end{equation*}
$$

The BCS energy (5) can therefore be written in the form

$$
\begin{equation*}
<H>=\sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\left(1-\epsilon_{\mathbf{k}} / E_{\mathbf{k}}\right)+\sum_{\mathbf{k k}^{\prime}} \frac{\Delta_{\mathbf{k}}}{2 E_{\mathbf{k}}} \frac{\Delta_{\mathbf{k}^{\prime}}^{*}}{2 E_{\mathbf{k}}^{\prime}} \tag{18}
\end{equation*}
$$

The various $\Delta_{\mathbf{k}}$ are independent variational parameters: varying them to minimize $\langle H\rangle$ and using $\partial E_{\mathbf{k}} / \partial \Delta_{\mathbf{k}}=\Delta_{\mathbf{k}}^{*} / E_{\mathbf{k}}$, we find an equation which can be written

$$
\begin{equation*}
\frac{\epsilon_{\mathbf{k}}^{2}}{E_{\mathbf{k}}^{2}}\left(\Delta_{\mathbf{k}}^{*}-\sum_{\mathbf{k}^{\prime}} V_{\mathbf{k k}^{\prime}} \frac{\Delta_{\mathbf{k}^{\prime}}^{*}}{2 E_{\mathbf{k}^{\prime}}}\right)=0 \tag{19}
\end{equation*}
$$

Cancelling the prefactor and taking the complex conjugate gives back the standard gap equation.
[Assume s-state until further notice, i.e., $\Delta_{\mathbf{k}}=$ function of only $|\mathbf{k}|$.]

$\underline{\text { Behavior of }<n_{\mathbf{k}}>\text { and } F_{\mathbf{k}} \text { in groundstate }}$

Let's anticipate the result that in most cases of interest, $\Delta_{\mathbf{k}}$ will turn out to be \sim const $\equiv \Delta$ over a range $\gg \Delta$ itself near the F.S. Then we have $<n_{\mathbf{k}}>=\left|v_{\mathbf{k}}\right|^{2}=\frac{1}{2}\left(1-\frac{\epsilon_{\mathbf{k}}}{\sqrt{\epsilon_{\mathbf{k}}^{2}+|\Delta|^{2}}}\right)$ and $F_{\mathbf{k}}=u_{\mathbf{k}} v_{\mathbf{k}}=\frac{\Delta}{2 E_{\mathbf{k}}}$

Thus, behavior of $\left\langle n_{\mathbf{k}}\right\rangle$ qualitatively similar to normal-state behavior at finite T (but falls off very slowly, $\sim \epsilon^{-2}$ rather than exponentially). $F_{\mathbf{k}}$ falls off as $|\epsilon|^{-1}$ for large ϵ. $[F(\mathbf{r})$ in coordinate space: see below, lecture 7.]

BCS theory at finite T

Obvious generalization of N-conserving GSWF: many body density matrix $\hat{\rho}$ is product of density matrices referring to occupation space of states $\mathbf{k} \uparrow,-\mathbf{k} \downarrow$.

$$
\begin{equation*}
\hat{\rho}=\prod_{\mathbf{k}} \hat{\rho}_{\mathbf{k}} \tag{20}
\end{equation*}
$$

The space \mathbf{k} is 4-dimensional, and can be spanned by states of the forms

$$
\begin{gather*}
\Phi_{G P} \equiv u_{\mathbf{k}}\left|00>+v_{\mathbf{k}}\right| 11>, \text { "ground pair" } \tag{21}\\
\Phi_{E P} \equiv v_{\mathbf{k}}^{*}\left|00>-u_{\mathbf{k}}\right| 11>, \text { "excited pair" } \\
\Phi_{B P}^{(1)} \equiv\left|10>, \Phi_{B P}^{(2)} \equiv\right| 01>, \text { "broken pair" }
\end{gather*}
$$

As regards the first two, they can again be parametrized by the Anderson variables $\theta_{\mathbf{k}}, \phi_{\mathbf{k}}$: the difference, now, is that there is a finite probability that a given "spin" \mathbf{k} will be reversed, i.e., the pair is in state $\Phi_{E P}$ rather than $\Phi_{G P}$. There is also finite probability that the pair in question will be a broken-pair state, in which case it clearly will not contribute to $<V\rangle$ and thus not to the effective field. Thus, we can go through the argument as above and derive the result.

$$
\begin{equation*}
\Delta_{\mathbf{k}}=-\frac{1}{2} \sum_{\mathbf{k}^{\prime}} V_{\mathbf{k} \mathbf{k}^{\prime}}<\sigma \perp_{\mathbf{k}^{\prime}}> \tag{22}
\end{equation*}
$$

but the $\left\langle\sigma \perp_{\mathbf{k}^{\prime}}\right\rangle$ is now given by the expression

$$
\begin{equation*}
<\sigma_{\perp \mathbf{k}^{\prime}}>=-\left(P_{G P}^{\left(\mathbf{k}^{\prime}\right)}-P_{E P}^{\left(\mathbf{k}^{\prime}\right)}\right) \Delta_{\mathbf{k}^{\prime}} / E_{\mathbf{k}^{\prime}} \tag{23}
\end{equation*}
$$

and thus the gap equation becomes

$$
\begin{equation*}
\left.\Delta_{\mathbf{k}}=-\sum_{\mathbf{k}^{\prime}} V_{\mathbf{k k}^{\prime}}\left(P_{G P}^{\left(\mathbf{k}^{\prime}\right)}\right)-P_{E P}^{\left(\mathbf{k}^{\prime}\right)}\right) \Delta_{\mathbf{k}^{\prime}} / 2 E_{\mathbf{k}^{\prime}} \tag{24}
\end{equation*}
$$

We therefore need to calculate the quantities $P_{G P}^{(\mathbf{k})}, P_{E P}^{(\mathbf{k})}$. (Since the states $\mid 10>$ and $\mid 01>$ are fairly obviously degenerate, we clearly must have $\left.P_{G P}^{(\mathbf{k})}+P_{E P}^{(\mathbf{k})}+2 P_{B P}^{(\mathbf{k})}=1\right)$.

Since we are talking about different occupation states, there is no question of Fermi or Bose statistics, and the probability of occupation of a given state is simply proportional to $\exp -\beta E_{n}\left(\beta \equiv 1 / k_{B} T\right)$ where E_{n} is the energy of the state.

Thus,

$$
\begin{equation*}
P_{G P}^{(\mathbf{k})}: P_{B P}^{(\mathbf{k})}: P_{E P}^{(\mathbf{k})}=\exp -\beta E_{G P}: \exp -\beta E_{B P}: \exp -\beta E_{E P} \tag{25}
\end{equation*}
$$

we already know that $E_{E P}-E_{G P}=2 E_{\mathbf{k}}$, (but $\left.E_{\mathbf{k}}=E_{\mathbf{k}}(T)!\right)$. What is $E_{B P}-E_{G P}$? Here care is needed in accounting. If all (MB) energies are taken relative to the normal-state F. sea, then evidently the energy of the "broken pair" states $\mid 01>$ or $\mid 10>$ is $\epsilon_{\mathbf{k}}$ (which can be negative!). In writing down the Anderson pseudospin Hamiltonian, however, we omitted the constant term $\sum_{\mathbf{k}} \epsilon_{\mathbf{k}}$. Hence the energy of the GP state relative to the normal F. sea is not $-E_{\mathbf{k}}$ but $\epsilon_{\mathbf{k}}-E_{\mathbf{k}}$. Hence, we have

$$
\begin{gather*}
E_{B P}-E_{G P}=E_{\mathbf{k}} \tag{26}\\
E_{E P}-E_{G P}=2 E_{\mathbf{k}}
\end{gather*}
$$

Hence tempting to think of BP states $\mid 10>$ and $\mid 01>$ as excitations of a "quasi-particle" and the EP state as involving excitations of 2 "quasiparticles." (Formalized in Bogoliubov transformation:

$$
\begin{equation*}
\alpha_{\mathbf{k} \uparrow}^{+}=u_{\mathbf{k}} a_{\mathbf{k} \uparrow}^{+}-v_{\mathbf{k}} a_{\mathbf{k} \downarrow} \tag{27}
\end{equation*}
$$

etc. Return to this below)
Anyway, this gives ${ }^{1}$

$$
\begin{equation*}
P_{G P}^{(\mathbf{k})}: P_{B P}^{(\mathbf{k})}: P_{E P}^{(\mathbf{k})}=1: \exp -\beta E_{\mathbf{k}}: \exp -2 \beta E_{\mathbf{k}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{G P}^{(\mathbf{k})}-P_{E P}^{(\mathbf{k})}=\frac{1-e^{-2 \beta E_{\mathbf{k}}}}{1+2 e^{-\beta E_{\mathbf{k}}}+e^{-2 \beta E_{\mathbf{k}}}}=\tanh \left(\beta E_{\mathbf{k}} / 2\right) \tag{29}
\end{equation*}
$$

[^0]Therefore, the finite-T BCS gap equation is:

$$
\begin{equation*}
\Delta_{\mathbf{k}}=-\sum_{\mathbf{k}^{\prime}} V_{\mathbf{k k}^{\prime}} \frac{\Delta_{\mathbf{k}^{\prime}}}{2 E_{\mathbf{k}^{\prime}}} \tanh \beta E_{\mathbf{k}^{\prime}} / 2 \tag{30}
\end{equation*}
$$

[Note: Also possible to derive by brute-force minimization of free energy as $F\left(\Delta_{\mathbf{k}}\right)$, see e.g. AJL app. 5D] This may or may not have (one or more) nontrivial solutions, depending on form of $V_{\mathbf{k k}^{\prime}}$ and value of T, see below.

Finite-T values of $<n_{\mathbf{k}}>$ and $F_{\mathbf{k}}: F_{\mathbf{k}}$ is simply reduced by factor $\tanh \beta E_{\mathbf{k}} / 2 .<n_{\mathbf{k}}>$ is given by a more complicated expression which correctly reduces to the Fermi distribution for $\Delta \rightarrow 0, T$ finite.

Alternative approach in terms of Bogoliubov quasiparticle operators:
Consider the operators $\alpha_{\mathbf{k} \sigma}^{+}$defined by (*)

$$
\begin{equation*}
\alpha_{\mathbf{k} \sigma}^{+} \equiv u_{\mathbf{k}} a_{\mathbf{k} \sigma}^{+}-\sigma v_{\mathbf{k}}^{*} a_{-\mathbf{k},-\sigma}, \text { and H.C. } \tag{31}
\end{equation*}
$$

so that inverse transformation is:

$$
\begin{equation*}
a_{\mathbf{k} \sigma}^{+} \equiv u_{\mathbf{k}} \alpha_{\mathbf{k} \sigma}^{+}+\sigma v_{\mathbf{k}} \alpha_{-\mathbf{k},-\sigma} \tag{32}
\end{equation*}
$$

It may be easily verified that the operators $\alpha_{\mathbf{k} \sigma}$ satisfy the same fermion A.C. relations as the $a_{\mathbf{k} \sigma}$, namely,

$$
\begin{equation*}
\left[\alpha_{\mathbf{k} \sigma}, \alpha_{\mathbf{k}^{\prime} \sigma^{\prime}}^{+}\right]=\delta_{\mathbf{k k}^{\prime}} \delta_{\sigma \sigma^{\prime}} \tag{33}
\end{equation*}
$$

It is also straightforward to verify that ${ }^{2}$

$$
\begin{gather*}
\alpha_{\mathbf{k} \sigma}\left|G P>\equiv 0, \alpha_{\mathbf{k} \uparrow}^{+}\right| G P>=\left|10>, \alpha_{\mathbf{k} \downarrow}^{+}\right| G P>=\mid 01> \tag{34}\\
\alpha_{\mathbf{k} \uparrow}^{+} \alpha_{-\mathbf{k} \downarrow}^{+}|G P>=| E P>
\end{gather*}
$$

Hence the $\alpha_{\mathbf{k}}^{+}$'s effectively create independent quasiparticles-EP states can be regarded as two independent excited quasiparticles corresponding to $\mathbf{k} \uparrow$ and $-\mathbf{k} \downarrow$.

Since $E_{B P}-E_{G P}=E_{\mathbf{k}}$ and $E_{E P}-E_{G P}=2 E_{\mathbf{k}}$, we can write the Hamiltonian in the form

$$
\begin{equation*}
\hat{H}=\mathrm{const}+\sum_{\mathbf{k} \sigma} E_{\mathbf{k}} \alpha_{\mathbf{k} \sigma}^{+} \alpha_{\mathbf{k} \sigma} \tag{35}
\end{equation*}
$$

At finite T the QP's will satisfy the standard Fermi distribution (but with $\mu=0$, since they can be created and destroyed):

$$
\begin{equation*}
n_{Q P}(\mathbf{k})=\left(\exp \beta E_{\mathbf{k}}+1\right)^{-1} \tag{36}
\end{equation*}
$$

[^1]We see that the quantity $\left\langle a_{\mathbf{k} \uparrow}^{+} a_{-\mathbf{k} \downarrow}^{+}\right\rangle \equiv\left\langle a_{-k \downarrow} a_{k \uparrow}\right\rangle^{*} \equiv F_{k}^{*}$ is given by

$$
\begin{align*}
& \left\langle a_{\mathbf{k} \uparrow}^{+} a_{-\mathbf{k} \downarrow}^{+}\right\rangle=u_{\mathbf{k}} v_{\mathbf{k}}^{*}\left\langle\alpha_{\mathbf{k} \uparrow}^{+} \alpha_{\mathbf{k} \uparrow}-\alpha_{\mathbf{k} \downarrow} \alpha_{-\mathbf{k} \downarrow}^{+}\right\rangle+\text {terms with no e.v. } \tag{37}\\
& =u_{\mathbf{k}} v_{\mathbf{k}}^{*}\left(n_{\mathbf{k} \uparrow}-\left(1-n_{-\mathbf{k} \downarrow}\right)\right)=u_{\mathbf{k}} v_{\mathbf{k}}^{*}\left(1-2 n_{\mathbf{k}}\right) \\
& =u_{\mathbf{k}} v_{\mathbf{k}}^{*} \tanh \beta E_{\mathbf{k}} / 2 \text {, as previously. }
\end{align*}
$$

[cf. p. 5.6, foot, for sign +c.c.!]
Note: a Bogoliubov quasiparticle doesn't carry unit particle number, since $\left[\hat{N}, \alpha_{k \sigma}^{+}\right] \neq$ const. $\alpha_{k \sigma}^{+}$, but does carry unit $\operatorname{spin}\left(\left[\hat{S}, \alpha_{k \sigma}^{+}\right]=\sigma \alpha_{, \sigma}^{+}\right)$.

Properties of BCS gap equation (eqn. (30))
(1) Independently of form of $V_{\mathbf{k k}^{\prime}}$, equation always has trivial solution $\Delta_{\mathbf{k}}=0$ (N state)
(2) If $V_{\mathbf{k k}^{\prime}}=V_{o}>0$, no (nontrivial) solution (cf. below).
(3) for $T \rightarrow \infty$, no nontrivial solution.
[reduces to $-\sum_{\mathbf{k}^{\prime}} V_{\mathbf{k k}^{\prime}} \Delta_{\mathbf{k}}^{\prime}=k_{B} T \Delta_{\mathbf{k}}$, and $-V_{\mathbf{k k}^{\prime}}$ must have maximum eigenvalue.]
Hence, if \exists nontrivial solution at $T=0$, must \exists critical temperature T_{c} at which this solution vanishes.
(4) Reduction to BCS form ${ }^{3}$ ($V_{\mathbf{k k}^{\prime}} \cong-V_{0}=$ const with cutoff).

Possible if and only if typical energy range over which $V_{\mathbf{k k}^{\prime}}$ changes appreciably is $\gg \Delta(0)$, which as we can verify, is $\geq T$ for $T \leq T_{c}$ [self-consistent solution using BCS form]. If so, define $\epsilon_{c} \gg \Delta, T$ so that for $\epsilon_{\mathbf{k}}$ within $\epsilon_{c} V_{\mathbf{k k}^{\prime}} \cong$ independent of $\epsilon_{\mathbf{k}}$, and write BCS equation in symbolic matrix form

$$
\begin{equation*}
\Delta=-\hat{V} \hat{Q} \Delta \equiv-\hat{V}\left(\hat{P}_{1}+\hat{P}_{2}\right) \hat{Q} \Delta \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{Q} \equiv \delta_{\mathbf{k k}^{\prime}} \cdot\left(\tanh \beta E_{\mathbf{k}^{\prime}} / 2\right) / 2 E_{\mathbf{k}^{\prime}} \tag{39}
\end{equation*}
$$

P_{1} projects out states $\left|\epsilon_{\mathbf{k}}\right|>\epsilon_{c}$, and P_{2} states $<\epsilon_{c}$, (so $\left.\hat{P}_{1}+\hat{P}_{2}=\hat{1}\right)$. (+) can be rearranged to give

$$
\begin{equation*}
\Delta=-\frac{\hat{V} \hat{P}_{2} \hat{Q} \Delta}{\left(1+\hat{P}_{1} \hat{Q} \hat{V}\right)} \equiv-\hat{t} \hat{P}_{2} \hat{Q} \Delta, \quad \hat{t}=\frac{\hat{V}}{1+\hat{P}_{1} \hat{Q} \hat{V}} \tag{40}
\end{equation*}
$$

i.e. \hat{t} sums over multiple scatterings outside "shell". Crucial point: since all states outside shell by hypothesis have $\left|\epsilon_{\mathbf{k}}\right| \gg \Delta, T$ the factor Q occurring in \hat{t} is essentially $\delta_{\mathbf{k k}^{\prime}} / 2\left|\epsilon_{\mathbf{k}^{\prime}}\right|$ and

[^2]hence \hat{t} depends neither on Δ nor on T, but is just some fixed operator which is a sort of "effective potential within shell." Moreover, by hypothesis, $t_{\mathbf{k k}^{\prime}}$ is practically constant, $\sim t_{0}$, within shell. Hence gap equation becomes (putting $t_{0} \equiv-V_{0}$)
\[

$$
\begin{equation*}
\Delta_{\mathbf{k}}=-V_{0} \sum_{\mathbf{k}^{\prime},\left|E_{\mathbf{k}^{\prime}}\right|<\epsilon_{c}} \Delta_{\mathbf{k}^{\prime}} \frac{\tanh \beta E_{\mathbf{k}^{\prime}} / 2}{2 E_{\mathbf{k}^{\prime}}} \tag{41}
\end{equation*}
$$

\]

This is exactly the equation originally obtained by BCS, who assumed $V_{\mathbf{k k}^{\prime}}=$ const $=V_{0}$ within shell $\left|\epsilon_{\mathbf{k}}\right|,\left|\epsilon_{\mathbf{k}^{\prime}}\right|<\epsilon_{c}$, otherwise zero. Note one can show that solution of equation doesn't depend on arbitrary cutoff energy ϵ_{c} (V_{0} scales so as to cancel this).
(5)Solution of BCS model: (eqn. (41))

Rewrite using $\sum_{\mathbf{k}} \rightarrow N(0) \int d \epsilon \quad N(0) \equiv \frac{1}{2}\left(\frac{d n}{d \epsilon}\right)$ and put $\Delta_{\mathbf{k}}=$ const. $\equiv \Delta$

$$
\begin{equation*}
\lambda^{-1}=\int_{0}^{\epsilon_{c}} \frac{(\tanh \beta E / 2}{E} d \epsilon, \quad \lambda \equiv=-N(0) V_{0}\left(\equiv-1 / 2\left(\frac{d n}{d \epsilon} V(0)\right), \quad E \equiv\left(\epsilon^{2}+|\Delta|^{2}\right)^{1 / 2}\right. \tag{42}
\end{equation*}
$$

[Factor of 2 cancelled by $\int_{-\epsilon_{c}^{\epsilon_{c}}} d \epsilon \rightarrow 2 \int_{0}^{\epsilon_{c}} d \epsilon$]
Obvious that no solution exists for $V_{0}>0$. For $V_{0}<0$:
Critical temperature: put $\beta=\beta_{c}, \Delta \rightarrow 0$, hence $E \rightarrow|\epsilon|$:

$$
\begin{gather*}
\lambda^{-1}=\int_{0}^{\epsilon_{c}} \frac{\tanh \left(\beta_{c} \epsilon / 2\right)}{\epsilon} d \epsilon=\ln \left(1.14 \beta_{c} \epsilon_{c}\right) \tag{43}\\
\Rightarrow k_{B} T_{c}=1.14 \epsilon_{c} \exp -\lambda^{-1} \equiv 1.14_{\epsilon_{c}} \exp -1 / N(0)\left|V_{0}\right|
\end{gather*}
$$

This expression is insensitive to arbitrary cutoff energy ϵ_{c} since $\left|V_{0}\right| \sim$ const $+\ln \epsilon_{c}$, i.e. cancels dependence. So, plausible to take value $\epsilon_{c} \sim \omega_{D}$, (as in original BCS paper): since $\omega_{D} \sim M^{-1 / 2}$, predicts $T_{c} \sim M^{-1 / 2}$ and helps to explain isotope effect. Also, assures selfconsistency since experimentally, $T_{c} \ll \epsilon_{c}$.

Zero-T solution:

$$
\begin{align*}
& \lambda^{-1}=\int_{0}^{\epsilon_{c}} \frac{d \epsilon}{\sqrt{\epsilon^{2}+|\Delta(0)|^{2}}}=\sinh ^{-1}\left(\epsilon_{c} / \Delta(0)\right) \cong \ln \left(2 \epsilon_{c} / \Delta(0)\right) \tag{44}\\
& \Rightarrow \Delta(0)=2 \epsilon_{c} \exp -1 / \lambda=1.75 T_{c}
\end{align*}
$$

Since $\Delta(0)$ measured in tunneling experiments (Lecture 7), can compare with experiment. Usually works quite well, but for "strong-coupling" superconductors where T_{c} / ϵ_{c} not very small, $\Delta(0) / k_{B} T_{c}$ usually somewhat >1.75.

At finite temperature, $T<T_{c}$, gap equation can be written

$$
\begin{equation*}
\int_{0}^{\epsilon_{c}}\left\{\tanh \beta E(T) / E(T)-\tanh \beta_{c} \epsilon / \epsilon\right\} d \epsilon=0 \tag{45}
\end{equation*}
$$

and \int extended to ∞ (since it converges)

$$
\begin{array}{r}
\Rightarrow \Delta(T) \text { is of form } \tag{46}\\
\Delta(T) / \Delta(0)=f\left(T / T_{c}\right)
\end{array}
$$

(Or equivalently $\Delta(T)=k T_{c} \tilde{f}\left(T / T_{c}\right)$). Roughly,

$$
\begin{equation*}
\Delta(T) / \Delta(0)=\left(1-\left(T / T_{c}\right)^{4}\right)^{1 / 2} \tag{47}
\end{equation*}
$$

Near T_{c} exact results obtainable, cf. below:
$\frac{\Delta(T)}{\Delta(0)} \sim 1.74\left(1-T / T_{c}\right)^{1 / 2} \quad$ or $\quad \Delta(T) / k_{\epsilon} T_{c} \sim 3 \cdot 06\left(1-T / T_{c}\right)^{1 / 2}$
(6) Back to the question of the Fock term

We earlier neglected the Fock term in the energy, namely,

$$
\begin{equation*}
H-\mu N>_{F o c k}=-\frac{1}{2} \sum_{\mathbf{k k}^{\prime} \sigma} V_{\mathbf{k} \mathbf{k}^{\prime}}\left\langle n_{\mathbf{k} \sigma}\right\rangle\left\langle n_{\mathbf{k}^{\prime} \sigma}\right\rangle \tag{48}
\end{equation*}
$$

This is equivalent to a shift in the single particle energy:

$$
\begin{equation*}
\epsilon_{\mathbf{k}} \rightarrow \epsilon_{\mathbf{k}}-\sum_{\mathbf{k}^{\prime}} V_{\mathbf{k} \mathbf{k}^{\prime}}\left\langle n_{\mathbf{k}^{\prime}}\right\rangle\left(\text { assuming }\left\langle n_{\mathbf{k} \sigma}\right\rangle \text { independent of } \sigma\right) \tag{49}
\end{equation*}
$$

and in general this depends on Δ. We have seen that crudely speaking, $\left\langle n_{\mathbf{k}}\right\rangle$ is smeared out away from its N -state value in the S state over an order $\sim \Delta$, and moreover the smearing is symmetric around the Fermi surface ${ }^{4}$. Thus, if $V_{\mathbf{k k}^{\prime}}$ is approximately constant over $\epsilon_{\mathbf{k}} \gg \Delta$, the renormalization of $\epsilon_{\mathbf{k}}$ is the same in the N and S states and has no effect on the energetics of the transition.
(7) Generalizations of BCS
(a) Sommerfeld \rightarrow Bloch: $\Rightarrow \Delta$ may be $f(\hat{\mathbf{n}})$, but qualitatively unchanged.
(b) Landau Fermi-liquid: to the extent, $\sum_{|\mathbf{k}|}<n_{\mathbf{k}}>$ unchanged on going from N to S , the "polarizations" which bring the molecular field terms into play do not occur \Rightarrow only effect is $m \rightarrow m *$: molecular-field terms do not affect the gap equation. But they do affect the responses, just as in the normal state. (cf. Lecture 8.)
(c) Coulomb long-range terms: have no effect on gap equation, do affect the responses.
(d) Strong coupling: crudely speaking, effects which vanish for $\Delta / \omega_{D} \rightarrow 0$. (e.g. approximation of constant renormalized V not exact). Need much more complicated treatment(Eliashberg). Generally speaking, this treatment provides only fairly small corrections

[^3]to "naive" BCS. (e.g. ratio $\left(\Delta(0) / k_{B} T_{c}\right), 1.75$ in naive BCS , can be as large as $2.4(\mathrm{Hg}$, $\mathrm{Pb})$).

[^0]: ${ }^{1}$ Note that in the normal state, where "GP" is simply $\mid 11>$ for $\epsilon_{\mathbf{k}}<0$ and $\mid 00>$ for $\epsilon_{\mathbf{k}}>0$, this gives for $\epsilon_{\mathbf{k}}>0<n_{\mathbf{k}}>=2\left(P_{E P}+P_{B P}\right)=2 /\left(e^{\beta \epsilon_{\mathbf{k}}}+1\right)$, and similarly for $\epsilon_{\mathbf{k}}<0$, i.e. the correct single-particle Fermi statistics.

[^1]: ${ }^{2}$ Here it is essential to remember that $\mid 11>$ is defined as $a_{\mathbf{k} \uparrow}^{+} a_{-\mathbf{k} \downarrow}^{+} \mid 00>$, not $a_{-\mathbf{k} \downarrow}^{+} a_{\mathbf{k} \uparrow}^{+} \mid 00>$ [sign change].

[^2]: ${ }^{3}$ The ensuing argument implicitly assumes that $V_{\mathbf{k} \mathbf{k}^{\prime}}$ is not a strong function of the directions of $\mathbf{k} \mathbf{k}^{\prime}$. If it is, non-s-wave solutions may be possible (cf. part 2 of course).

[^3]: ${ }^{4}$ Argument may fail in presence of severe particle-hole asymmetry: even if Δ itself is constant, may lead to $\sum_{|\mathbf{k}|}<n_{\mathbf{k}}>=f(\hat{n})$

